

Configurations and Hindered Decays of K-Isomers in deformed nuclei with A>100

with G.D. Dracoulis & T. Kibedi (ANU)

K-Isomers Evaluation (Horizontal)

- completed and submitted for publication in ADNDT
- data available in ENSDF format implications for ENSDF format development - K quantum number in deformed nuclei
- ☐ implications for nuclear reactions modeling at low excitation energies (NRF, astrophysics ...), e.g. level densities, strength functions, RIPL, etc.
- new processing codes development modification of ruler (a nightmare) & new python code (from scratch) ... it is not that complicated ...
- a short letter is under preparation
- □ a detailed review of Nuclear Isomers invited article in Prog. Rep. Physics under preparation with P.M. Walker, U. Surrey, UK

K hindered decays

- ✓ hindrance $F_w = \tau_y / \tau_W$
- ✓ reduced hindrance $f_v = F_w^{1/v}$

typically $f_v = 20 - 300$, but many exceptions...

- \checkmark transition of multipolarity λ can only change the K projection by at most λ .
- \checkmark the shortfall is the degree of "forbiddenness" ∨ = ΔK -λ.

Rusinov systematics

SOVIET PHYSICS USPEKHI

VOLUME 4, NUMBER 2

SEPTEMBER-OCTOBER 1961

NUCLEAR ISOMERISM

L. I. RUSINOV*

Usp. Fiz. Nauk 73, 615-630 (April, 1961)

only **4** *two*-qp cases

on K-forbidden transitions show that increase of K forbiddenness by one degree represents the reduction of transition intensity by a factor of about 100. A sep-

$$\log F_{\mathbf{W}} = 2(|\Delta K| - L)$$

Lobner systematics

Volume 26B, number 6

PHYSICS LETTERS

19 February 1968

SYSTEMATICS OF ABSOLUTE TRANSITION PROBABILITIES OF K-FORBIDDEN GAMMA-RAY TRANSITIONS

K. E. G. LÖBNER

Department of Physics, Technical University, Munich, Germany

250 cases- both *one*- and *two*- and higher mqp isomers

sloping lines given in fig. 1 and fig. 2. It is found that the reduced transition probabilities decrease approximately by a factor of 100 per degree of K-forbiddenness in agreement with

The frequently used "empirical rule" of Rusinov [1]: $\log F_W = 2(|\Delta K| - L)$ is in general not true, especially not for the El and E4 transi-

It must be emphasized that the F_W values scatter considerably. Therefore, care should be taken if K values of levels are deduced from measured γ -ray transition probabilities.

New systematic studies

K-hindrance distributions

 \checkmark hindrance $F_w = \tau_\gamma / \tau_W$

- distributions are not symmetrical role of different mixing mechanisms
- □ centroids increase much more slowly than what would be expected from the rule of thumb, e.g. ~100 per degree of K-forbiddenness (dashed lines)
 - \triangle Δ K=2 (allowed) E2 has two peaks
 - ✓ non-intrinsic states transitions between rotational-aligned structures in transitional nuclei, e.g. I^π=12⁺ state in ¹⁹²Os
 - ΔK=7 E1 is strongly peaked, but at low value compared to the trend
 - ✓ multiple transitions from a single isomer, e.g. K^π=7⁻ in ¹⁸⁰Os five
 E1 transitions

K- hindrance classification

$\sigma\lambda$	F_0	f_0	χ^2
all points			
E1	$2.0^{+65}_{-15} \times 10^{5}$	6.4^{+32}_{-21}	2.2
M1	$2.9^{+71}_{-6} \times 10^{3}$	4.5^{+27}_{-17}	1.0
	$1.2^{+17}_{-7} \times 10^2$	2.8^{+15}_{-10}	1.2
selected points: see Fig. 15			
E1	$1.0^{+37}_{-8} \times 10^{5}$	12.5^{+124}_{-62}	0.3
M1	$1.7^{+55}_{-3} \times 10^3$	6.7^{+65}_{-33}	0.3
E2	$1.2^{+17}_{-7} \times 10^2$	3.2^{+28}_{-15}	0.9

- ✓ less than the ~100 per degree of K forbiddenness
- ✓ it is multipolarity dependent
- ✓ no need to divide by arbitrary factor of ~10⁵ for E1

M1-E2 correlations ...

consequence of the K-selection rule \rightarrow decay proceed stepwise by minimizing ΔK

Conclusions & Outlook

- completed and submitted for publication in ADNDT
- data available in ENSDF format easy to add new cases will continue updating
- a short letter for Phys. Rev. Letts is under preparation
- □ a detailed review of Nuclear Isomers (including those in spherical nuclei & those that have potential for applications) invited article in Rep. Prog. in Phys. together with P.M. Walker, University of Surrey, UK to be submitted by April 2015